

Décroissance radioactive Stabilité et instabilité des noyaux : diagramme (N,Z), radioactivité α et β, équation d'une réaction nucléaire, lois de conservation.

Radioactivité gamma
. Évolution temporelle d'une population de noyaux radioactifs ; constante radioactive ; loi de décroissance radioactive ; temps de demi-vie ; activité.

Radioactivité naturelle ; applications à la datation.

Applications dans le domaine médical ; protection contre les rayonnements ionisants.

I. Radioactivité

- Certains noyaux sont très instables, et se "désintègrent" tout seuls au cours du temps
- Pendant cette désintégration, ils émettent des rayonnements de très haute énergie (et très dangereux)
- Les nucléides instables ont une durée de vie spécifique, appelée:

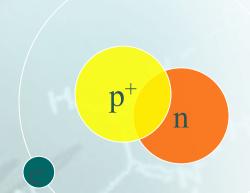
"Demi – vie" ou "période"

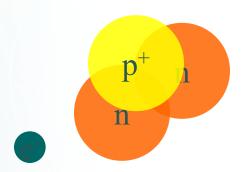
Durée au bout de laquelle la moitié des noyaux initiaux se sont désintégrés spontanément.

I.1 Nucléides et isotopes

Nucléide : Tout noyau défini par une valeur de A et une valeur de Z, représenté par AZX

Isotopes: nucléides qui ont le même nombre de protons mais des nombres différents de neutrons


Isotopes de l'hydrogène


Hydrogene (1H)

Deutérium (2H)

Tritium (3H)

Z= 1 et A= 1

Z=1 et A=2

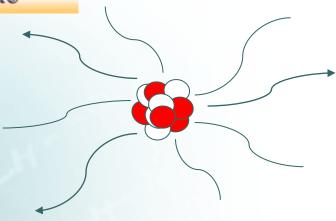
Z=1 et A=3
Radioactif

I.2 Proprietes de la desintegration radioactive :

1- Respecte la conservation de la charge electrique Z et du nombre de masse A.

$${}_{Z}^{A}X \rightarrow {}_{Z_{1}}^{A_{1}}Y_{1} + {}_{Z_{2}}^{A_{2}}Y_{2}$$

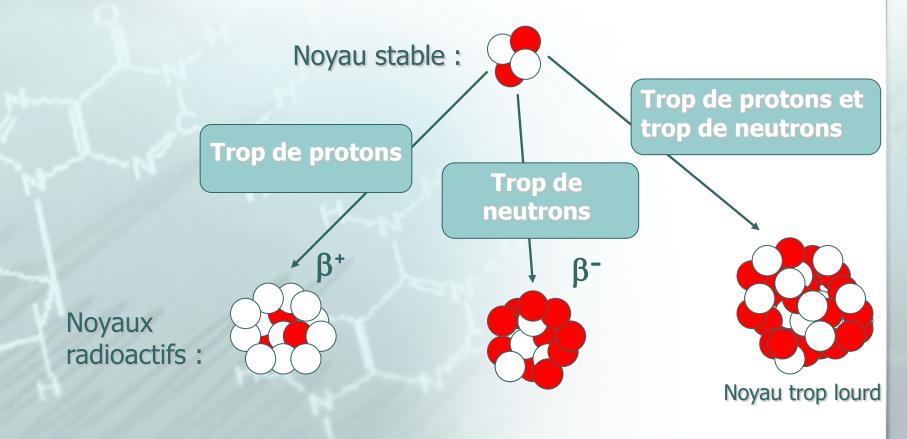
Z et A doivent etre conserves apres la desintegration :

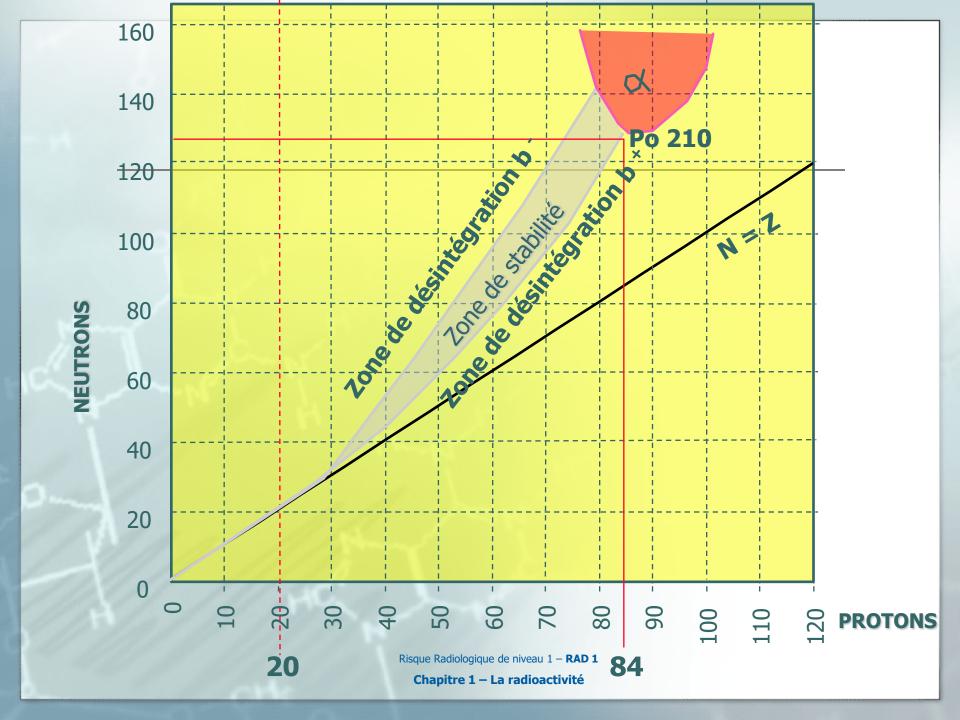

$$A = A1 + A2$$

Et
$$Z = Z1 + Z2$$

2- Spontaneite :la desintegration se produit sans aucune intervention exterieure.

C'est un processus aléatoire


Déséquilibre énergétique



La radioactivité est donc un phénomène nucléaire d'origine probabiliste (la probabilité que le noyau se trouve à un instant donné dans un état de combinaison instable est due au hasard).

II. Les causes du déséquilibre dans le noyau

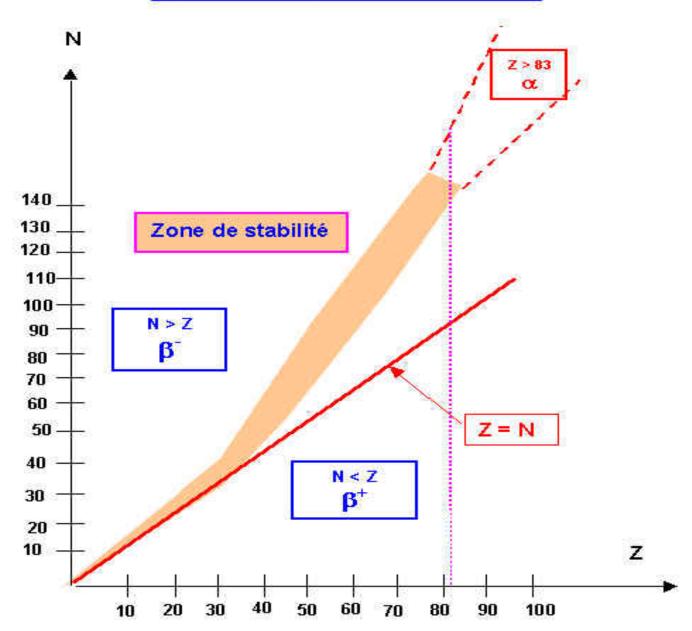

Déséquilibre dans les particules

Diagramme de stabilité des isotopes

II.1. Excès de nucléons: le rayonnement alpha

Il consiste en l'émission de particules α (He):

2 Protons

2 Neutrons

Noyau d'HELIUM

 $_{z}^{A}X \longrightarrow _{z-2}^{A-4}Y + _{2}^{4}He^{2+} + Energie$

Risque Radiologique de niveau 1 – RAD 1

II.2. Excès de neutrons : la désintégration B

Un neutron se transforme en un proton avec émission d'un électron et libération d'énergie :

$$_{z}^{A}X \longrightarrow _{z+1}^{A}Y + _{-1}^{0}e$$

Neutron Proton Electron

O

$${}^{14}_{6}$$
 C \longrightarrow N + ${}^{0}_{-1}$ e + Energie

II.3. Excès de protons : la désintégration β+

Un proton se transforme en un neutron avec émission d'un positon et libération d'énergie :

$$z \times z \rightarrow z^{A} \times z^{-1} \times z^{-1}$$

$$\frac{68}{31}$$
 Ga \longrightarrow "Zn + $\frac{0}{1}$ e + Energie

II.4. Rayonnement Y

- Perte de l'excès d'énergie de noyau excité >> émission γ
- Suit généralement une émission corpusculaire

Caractéristiques générales des rayonnements γ :

- onde électromagnétique (non constituée de particules)
- sans masse
- E généralement comprise entre 60 keV et 3 MeV
- parcours de quelques mètres dans la matière
- parcours de quelques centaines de mètres dans l'air

Le changement d'état peut se faire par une émission d'un ou plusieurs photons γ d'énergies différentes.

$$^{60}_{27}$$
 Co \longrightarrow $^{60}_{28}$ Ni + $_{\beta^{-}}$ + $_{\gamma}$ (1,17Mev) + $_{\gamma}$ (1,33Mev)

III. Loi de décroissance radioactive

Le nombre de désintégrations par unité de temps est proportionnel au nombre d'atome radioactif à l'instant t N(t).

$$\frac{dN}{dt} = -\lambda N$$

Où dN/dt est le taux (vitesse) de désintégration, λ est la constante de désintégration, et N est le nombre d'atomes radioactifs restant à l'instant t.

La constante de désintégration, λ , est indépendante des conditions de pression et de température.

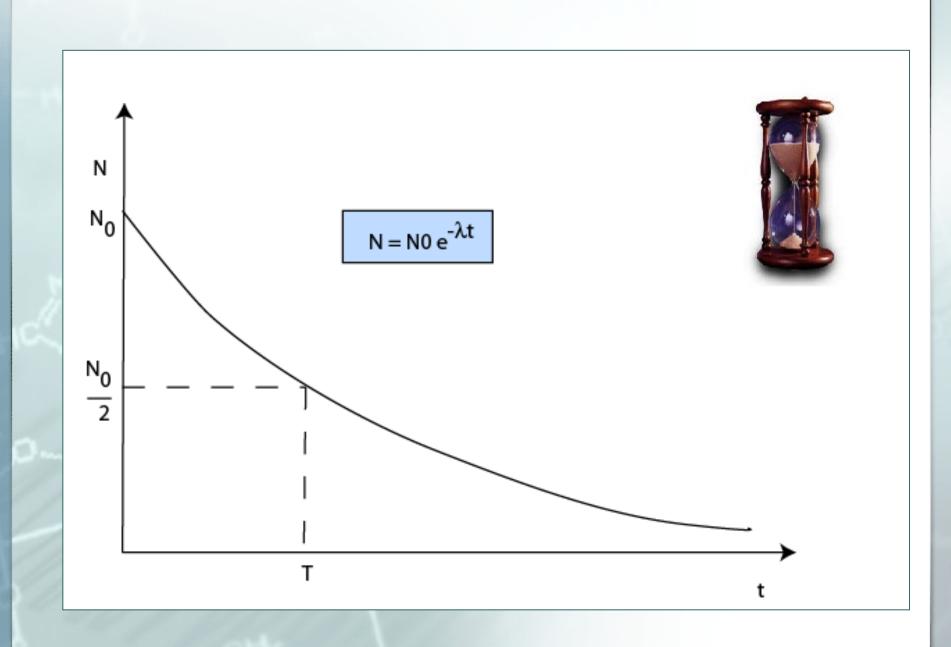
La solution est de la forme

$$N = N_0 e^{-\lambda t}$$

où N_0 est le nombre d'atomes radioactifs à $t_0 = 0$

$$\ln\left(\frac{N}{N_0}\right) = -\lambda t$$

Demi-vie : Temps requis pour que la moitié d'un stock donné de radioéléments se soit désintégré.


Si $t = T_{1/2}$, alors $N = N_0/2$, de sorte que:

$$N_0/2 = N_0 e^{-\lambda T_{1/2}}$$

$$-\ln 2 = -\lambda T_{1/2}$$

$$\frac{1}{2} = e^{-\lambda T_{1/2}}$$

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

